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ABSTRACT
This article develops design-based ratio estimators for clustered, blocked randomized controlled trials
(RCTs), with an application to a federally funded, school-based RCT testing the effects of behavioral
health interventions. We consider finite population weighted least-square estimators for average treatment
effects (ATEs), allowing for general weighting schemes and covariates. We consider models with block-by-
treatment status interactions as well as restricted models with block indicators only. We prove new finite
population central limit theorems for each block specification. We also discuss simple variance estimators
that share features with commonly used cluster-robust standard error estimators. Simulations show that the
design-based ATE estimator yields nominal rejection rates with standard errors near true ones, even with
few clusters.
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1. Introduction

There is a growing literature on design-based methods for
analyzing randomized controlled trials (RCTs) (e.g., Yang and
Tsiatis 2001; Freedman 2008; Schochet 2010, 2016; Lin 2013;
Miratrix et al. 2013; Imbens and Rubin 2015; Middleton and
Aronow 2015; Li and Ding 2017). These nonparametric meth-
ods are built on the potential outcomes framework, introduced
by Neyman (1923) and later developed in seminal works by
Rubin (1974, 1977) and Holland (1986). They leverage a funda-
mental component of experimental designs—the known treat-
ment assignment mechanism—to achieve results that rely on
minimal assumptions.

The design-based literature has largely focused on non-
clustered designs in which individuals are randomly assigned to
research conditions. A much smaller literature has considered
design-based methods for clustered RCTs where groups (such
as schools, hospitals, or communities) rather than individuals
are randomized. Clustered designs are common in evaluations
that test interventions targeted to a group and are sometimes
preferred to non-clustered designs as they can help minimize
bias due to the potential spillover of intervention effects from
treatment to control subjects. Clustered designs are becom-
ing increasingly prevalent in social policy research (Schochet
2008) and have grown exponentially in medical trials (Bland
2004).

For example, the evaluation of the Social and Character
Development (SACD) Research Program was a major federal
initiative, co-funded by the Institute of Education Sciences at
the U.S. Department of Education and the Centers for Disease
Control and Prevention, to test interventions promoting posi-
tive social and character development among elementary school
children, with the goal of ultimately improving their academic

CONTACT Peter Z. Schochet pschochet@mathematica-mpr.com Mathematica, P.O. Box 2393, Princeton, NJ 08543-2393
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

performance (SACD Research Consortium 2010). The study
was conducted in seven large school districts (blocks), where
half the schools (clusters) within each district were randomly
assigned to a treatment group and half to a control group, yield-
ing a final sample of 84 schools (42 treatment and 42 control).
Intervention features included materials and lessons on social
skills, behavior management, social and emotional learning,
self-control, anger management, and violence prevention.

Several key aspects of the SACD study motivate the the-
ory underlying this article. First, neither the sample of seven
SACD school districts nor the 10 to 14 study schools per dis-
trict were randomly sampled from broader populations. Rather,
the participating districts and schools were volunteers, yield-
ing a convenience sample, as is often the case in RCTs across
disciplines. This suggests a finite population framework for
estimating average treatment effects (ATEs), where the sam-
ple and their potential outcomes are considered fixed, with
treatment assignments being the only source of randomness,
and where study results are assumed to pertain to the study
sample only (Neyman 1923). This framework differs from typ-
ical model-based, super-population approaches where poten-
tial outcomes are assumed to be randomly sampled from a
broader (often infinite) population—even if vaguely defined—
and where study results are assumed to generalize to this
population.

A second aspect of the SACD study that motivates our the-
ory is the need for flexible weighting schemes to accommo-
date decisions on how clusters and blocks are to be weighted
to estimate pooled effects and to help adjust for data nonre-
sponse. Third, the theory should address common approaches
for including and incorporating block (fixed) effects in the
models. Finally, the estimation strategy should allow for the
inclusion of model baseline covariates to improve precision;
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this is especially important for clustered designs where power
is often a concern due to design effects from clustering and the
typical high cost of adding clusters to the study.

We achieve these objectives in this work by developing
covariate-adjusted design-based methods for obtaining point
estimates and associated inference for clustered RCTs. Our
results rely on new finite population central limit theorems
(CLTs) for design-based ATE ratio estimators that apply to
the general case where randomization of clusters is con-
ducted within blocks (strata). We consider ratio estimators for
clustered RCTs obtained using weighted least square (WLS)
methods, which have intuitive appeal because they parallel
differences-in-means and regression-adjusted ATE estimators
for non-clustered designs. We allow for general weighting
schemes and covariates. We also consider models with block-by-
treatment status interactions as well as models with block fixed
effects only.

We provide consistent variance estimators and compare
them, both analytically and through simulations, to widely used
ordinary least-square estimators with cluster-robust standard
errors (CRSE) (Liang and Zeger 1986; Cameron and Miller
2015). Our simulations suggest that the design-based ratio esti-
mators yield Type I error rates near nominal levels, even with
relatively few clusters. We also conduct an empirical analysis
using data from the SACD study to compare different specifica-
tions of our estimators to each other and to the standard CRSE
estimator.

The rest of this article is structured as follows. Section 2
discusses the literature this work is built on and Section 3
provides our theoretical framework. Sections 4 and 5 present
our finite population CLTs and variance estimators. Section
6 presents simulation results and Section 7 presents empir-
ical results using our motivating SACD example. Section 8
concludes.

2. Related Work

Our finite population CLTs build on Li and Ding (2017), who
consider CLTs for unbiased estimators for clustered RCTs using
the Horvitz-Thompson estimator developed by Middleton and
Aronow (2015) with cluster-level covariates, but do not con-
sider ratio estimators or blocked designs with general weighting
schemes. Our theory also builds on results in Scott and Wu
(1981) who consider CLTs for ratio estimators for finite popu-
lation totals, but not for clustered designs or RCTs. We extend
the design-based results in Imai et al. (2009) who examine
clustered RCTs with pairwise matching but not general blocked
designs, models with covariates, or CLTs. We also extend the
design-based results in Schochet (2013) who examines clustered
designs without blocking, and Pashley and Miratrix (2020) and
Liu and Yang (2020) who consider blocked designs without
clustering. In particular, Liu and Yang (2020) also derive finite
population CLTs for blocked designs with covariates for RCTs,
but only for designs without clustering.

Other literature in this area has a different focus. Abadie et al.
(2017) discuss reasons for adjusting for clustering and investi-
gate differences between the true asymptotic finite population
variance and the CRSE variance estimator, but do not consider

impact estimation. Hansen and Bowers (2009) propose model-
assisted estimators combined with randomization inference for
regression models in a specific context without deriving design-
based estimators. Samii and Aronow (2012) compare design-
based and robust estimators for non-clustered designs, but not
for clustered designs or models with covariates. While there is
a large statistical literature on related design-based methods for
analyzing survey data with complex sample designs (e.g., Fuller
1975, 2009; Cochran 1977; Bickel and Freedman 1984; Rao and
Shao 1999; Wolter 2007; Lohr 2009), these works do not focus
on RCT settings.

3. Framework and Definitions

We assume that a clustered RCT of m total clusters is conducted
across h blocks, with block b having mb clusters (b = 1, . . . , h).
Randomization of clusters is conducted separately by block,
with m1

b = mbpb assigned to the treatment group and m0
b =

mb(1 − pb) assigned to the control group (0 < pb < 1).
We assume a sample of njb individuals in cluster j in block b,
with nb individuals in the block and n individuals in total. For
each cluster, either all individuals are treated or not. We index
individuals by ijb for individual i in cluster j in block b. Let
Yijb(1) be a person’s outcome if assigned to a treated cluster
and Yijb(0) be the outcome in a control cluster. These potential
outcomes can be continuous, binary, or discrete. We assume a
finite population model, where potential outcomes are assumed
to be fixed for the study. Let Tjb equal 1 if cluster jb is randomly
assigned to the treatment condition and 0 otherwise. Let Sijb,s
and Sjb,s denote indicator variables of block membership for
individuals and clusters (that is, Sijb,s = 1 or Sjb,s = 1 if the
specified person or cluster belongs to block s).

We also allow for weights, with individual weights of wijb >

0, cluster weights of wjb = ∑njb
i=1 wijb, and block weights of wb =∑mb

j=1 wjb. Depending on the research questions of interest, the
weights can be set, for example, so that intervention effects
pertain to the average individual in the block (wijb = 1 and
wjb = njb) or the average cluster in the block (wijb = 1/njb and
wjb = 1). They can also be further modified to handle various
forms of data nonresponse (we do not consider estimation error
in the nonresponse weights in our variance formulas).

We assume two conditions that generalize those in Imbens
and Rubin (2015) for the nonclustered RCT design to our
context. The first is the stable unit treatment value assumption
(SUTVA) (Rubin 1986):

(C1): SUTVA: Let Yijb(Tclus) denote the potential outcome for
an individual given the random vector of all cluster treatment
assignments, Tclus. Then, if Tjb = T′

jb for cluster j, we have that
Yijb (Tclus) = Yijb

(
T′

clus
)
.

SUTVA allows us to express Yijb (Tclus) as Yijb
(
Tjb

)
, so

that the vector of individual potential outcomes in cluster jb
depends only on the cluster’s treatment assignment and not
on the treatment assignments of other clusters in the sample.
SUTVA could be more plausible for clustered designs than non-
clustered designs because there are likely to be fewer meaning-
ful interactions between sample members across clusters than
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within clusters. SUTVA also assumes a particular treatment unit
cannot receive different forms of the treatment.

Under SUTVA, the block b ATE parameter of interest for the
finite population model is

β1,b =
∑mb

j=1 wjb(Ȳjb(1) − Ȳjb(0))∑mb
j=1 wjb

= ¯̄Yb(1) − ¯̄Yb(0), (1)

where, for t ∈ {1, 0}, Ȳjb(t) = 1
wjb

∑njb
i=1 wijbYijb(t) is the

weighted mean potential outcome in the treatment or con-
trol condition. The ATE parameter across all blocks is then a
weighted average of the block-specific ATE parameters:

β1 =
∑h

b=1 wbβ1,b∑h
b=1 wb

. (2)

Our second condition is the randomization itself:

(C2): Complete randomization of clusters within blocks: Let
Tclus,b be the random vector of cluster treatment assignments
in block b. Let (m1

1, . . . , m1
h) be a prespecified vector denot-

ing the number of clusters to assign to treatment within each
block. Then, for any vector, tclus,b = (t1b, . . . , tmbb) of ran-
domization realizations such that

∑mb
j=1 tjb = m1

b, we have that

prob(Tclus,b = tclus,b) =
(

mb
m1

b

)−1
. This holds for all b ∈

{1, . . . , h}, and we further assume that the cluster assignments,
(Tclus,1, . . . , Tclus,h), are mutually independent.

4. ATE Estimators for the Finite Population Model

Under the potential outcomes framework and SUTVA, the data-
generating process for the observed outcome measure, yijb, is a
consequence of the assignment mechanism:

yijb = TjbYijb(1) + (1 − Tjb)Yijb(0). (3)

This relation states that we can observe yijb = Yijb(1) for those
in the treatment group and yijb = Yijb(0) for those in the control
group, but not both.

Rearranging (3) generates the following nominal regression
model for any given block:

yijb = β0,b + β1,b
(
Tjb − p∗

b
) + uijb, (4)

where β1,b = ¯̄Yb(1)− ¯̄Yb(0) is the block-specific ATE parameter,
p∗

b = 1
wb

∑mb
j=1 Tjbwjb is the weighted treatment group assign-

ment probability, β0,b = p∗
b
¯̄Yb(1) + (1 − p∗

b)
¯̄Yb(0) is the mean

potential outcome in the block, and the “error” term, uijb, can be
expressed as

uijb = Tjb
(

Yijb(1) − ¯̄Yb(1)
)

+ (1 − Tjb)
(

Yijb(0) − ¯̄Yb(0)
)

.

We center the treatment indicator in (4) to facilitate the theory
without changing the estimator.

In contrast to usual formulations of the regression model,
our residual, uijb, is random solely because of Tjb (that is, due
to random assignment) (see also Freedman 2008; Lin 2013;

Middleton 2018). This framework allows treatment effects to
differ across individuals and clusters and is nonparametric
because it makes no assumptions about the distribution of
potential outcomes. Note that our model does not satisfy key
assumptions of the usual regression model for correlated data:
over the randomization distribution, E(uijb) is not zero, uijb is
heteroscedastic, cov(uijb, ui′jb) is not constant for individuals
in the same cluster, cov(uijb, ui′j′b) is nonzero for individuals
in different clusters, and uijb is correlated with the regressor(
Tjb − p∗

b
)

(see Schochet 2016). Under this framework, cor-
relations arise because individuals in the same cluster share
the same treatment assignment, and because Tjb and Tj′b are
correlated due to the complete randomization of clusters within
the finite population. This differs from the typical model-
based framework where correlations arise from shared cluster-
specific random effects (e.g., due to common environmental
factors).

The model in (4) can also be expressed using block indicator
variables as follows:

yijb =
h∑

s=1
β1,sSijb,sT̃js +

h∑
s=1

β0,sSijb,s + uijb, (5)

where T̃jb = (Tjb−p∗
b) is the centered treatment status indicator.

Due to blocked random assignment, the errors are independent
across blocks. We include terms for all h blocks in the model and
exclude a grand intercept term.

For estimation, we use the following working (hypothe-
sized) model that provides covariate-adjusted ATE estimates
by including in (5) a 1xv vector of fixed, block-mean-centered
baseline covariates, x̃ijb, with associated parameter vector γ :

yijb =
h∑

s=1
β1,kSijb,sT̃js +

h∑
s=1

β0,sSijb,s + x̃ijbγ + eijb,

where x̃ijb = (xijb − ¯̄xb), ¯̄xb = 1
wb

∑mb
j=1

∑njb
i=1 wijbxijb,

and eijb is the error term. These covariates, unaffected by
the treatment, can be at the individual or cluster level. We
assume sufficient degrees of freedom for variance estimation
(see Section 4.2). While the covariates do not enter the true
RCT model in (4) and the ATE estimands do not change, the
covariates will increase precision to the extent they are corre-
lated with the potential outcomes. We do not need to assume
that the true conditional distribution of yijb given xijb is linear
in xijb.

We do not consider working models that interact x̃ijb and T̃jb
due to associated degrees of freedom losses that can seriously
reduce the power of clustered RCTs that, in practice, often
contain relatively few clusters for cost reasons. Similarly, we pool
γ across blocks. As discussed in Section 4.1, γ is well defined:
it is the finite population regression coefficient that would be
obtained if we could run the weighted regression on the full
schedule of potential outcomes.

Using individual-level data, we can fit our working model
using weighted least squares (WLS) with weights wijb. This
yields the following closed-form WLS estimator for β1,b (see
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Section A.3 in the supplementary materials for the derivation):

β̂1,b = 1
w1

b

mb∑
j:Tjb=1

wjbȳjb − 1
w0

b

mb∑
j:Tjb=0

wjbȳjb

−
⎛
⎝ 1

w1
b

mb∑
j:Tjb=1

wjbx̄jb − 1
w0

b

mb∑
j:Tjb=0

wjbx̄jb

⎞
⎠ γ̂

= ¯̄yb(1) − ¯̄yb(0) − ( ¯̄x1
b − ¯̄x0

b)γ̂ , (6)

where, for t ∈ {1, 0}, ¯̄yb(t) is the weighted average of the
observed outcome across subjects in the treatment or control
group, wt

b = ∑mb
j:Tjb=t wjb is the sum of the weights, and γ̂ is the

WLS estimator for γ . β̂1,b is the WLS estimator that would be
obtained using standard statistical packages.

4.1. Theoretical Results

To examine the asymptotic properties of β̂1,b, we consider a
hypothetical increasing sequence of finite populations where
mb → ∞ in each block, so that m = ∑h

b=1 mb → ∞.
The number of blocks, h, however, remains fixed. In principle,
parameters should be subscripted by m, but we omit this nota-
tion for simplicity. We further assume that the proportion of all
clusters in a block converges to a constant, that is, mb/m →
qb as m → ∞. We finally assume that pb = m1

b/mb is (approxi-
mately) constant as m → ∞, so that the number of treated and
control clusters in each block increases with m (that is, m1

b → ∞
and m0

b → ∞).
Given this framework, we present a CLT for the WLS esti-

mator that provides design-based standard errors and associated
inference. Before presenting our theorem, we first need to define
several quantities pertaining to finite population variances and
covariances. First, for t ∈ {1, 0}, we define Db(t) = wjb

w̄b
(Ȳjb(t)−

¯̄Yb(t) − (x̄jb − ¯̄xb)γ ) as the residualized potential outcomes at
the cluster level in the treatment and control conditions, where
w̄b = 1

mb

∑mb
j=1 wjb. Second, we define S2

Db
(t) as the variance of

these residuals,

S2
Db

(t) = 1
mb − 1

mb∑
j=1

w2
jb

w̄2
b
(Ȳjb(t) − ¯̄Yb(t) − (x̄jb − ¯̄xb)γ )2,

and S2
Db

(1, 0) as the associated treatment-control covariance,

S2
Db

(1, 0) = 1
mb − 1

mb∑
j=1

w2
jb

w̄2
b
(Ȳjb(1) − ¯̄Yb(1)

− (x̄jb − ¯̄xb)γ )(Ȳjb(0) − ¯̄Yb(0) − (x̄jb − ¯̄xb)γ ).

Third, we define var(D̂b) as the variance of the mean difference
in residuals between the observed (randomized) treatment and
control group samples,

var
(

D̂b
)

= S2
Db

(1)

m1
b

+ S2
Db

(0)

m0
b

− S2(Db)

mb
, (8)

where S2(Db) is the variance (heterogeneity) of the ATEs across
clusters in block b,

S2(Db)= 1
mb − 1

mb∑
j=1

w2
jb

w̄2
b
(Ȳjb(1) − Ȳjb(0) − ( ¯̄Yb(1) − ¯̄Yb(0)))2.

Fourth, we define the variance of the weights as S2 (wb) =
1

mb−1
∑mb

j=1(wjb − w̄b)
2. Fifth, we need the weighted variances,

S2
xb,k, of each covariate k,

S2
xb,k = 1

mb − 1

mb∑
j=1

w2
jb

w̄2
b
([x̄jb − ¯̄xb]k)

2,

and the weighted variance-covariance matrix of the covariates
with themselves, S2

x,b, which is analogous to the classic X′WX
matrix in WLS,

S2
x,b = 1

mb

mb∑
j=1

njb∑
i=1

wijb
(
xijb − ¯̄xb

)′ (xijb − ¯̄xb
)

.

Finally, we need two matrices that are analogous to the classic
X′WY matrix in WLS,

S2
x,Y ,b(t) = 1

mb

mb∑
j=1

njb∑
i=1

wijbx′
ijbYijb(t) − ¯̄x′

bwY(t)b

and

S2
xY ,b(t) = 1

mb

mb∑
j=1

njb∑
i=1

(
wijbx′

ijbYijb(t) − wxY(t)b

)2
,

where wY(t)b = 1
mb

∑mb
j=1

∑njb
i=1 wijbYijb(t) and wxY(t)b =

1
mb

∑mb
j=1

∑njb
i=1 wijbx′

ijbYijb(t).
We now present our CLT theorem, proved in Section A.3

in the supplementary materials, which adapts finite population
CLT results in Li and Ding (2017) and Scott and Wu (1981) to
our setting.

Theorem 1. Assume (C1), (C2), and the following conditions for
t ∈ {1, 0} and b ∈ {1, . . . , h}:

(C3) Letting gb(t) = max1≤j≤mb

(
wjb
w̄b

(
Ȳjb(t) − ¯̄Yb(t) − (

x̄jb−

¯̄xb
)
γ

))2
, as m → ∞,

1
(mt

b)
2

gb(t)
var(D̂b)

→ 0.

(C4) f t
b = mt

b/mb has a limiting value in (0, 1), and S2
Db

(t) and
S2

Db
(1, 0) also have finite limiting values.

(C5) As m → ∞,
(
1 − f t

b
) S2(wb)

mt
bw̄2

b
→ 0.

(C6) Letting hb,k(t) = max1≤j≤mb

{wjb
w̄b

([x̄jb − ¯̄xb]k)
}2

for all k,
as m → ∞,

1
min

(
m1

b, m0
b
) hb,k(t)

S2
xb,k

→ 0.
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(C7) S2
xb,k, S2

x,b, S2
x,Y ,b(t), and S2

xY ,b(t) have finite (positive defi-
nite) limiting values.
Then, as m → ∞, β̂1,b is a consistent estimator for β1,b and

β̂1,b −
( ¯̄Yb(1) − ¯̄Yb(0)

)
√

var
(

D̂b
) d→ N(0, 1),

where var(D̂b) is defined as in (8).

Remark 1. Condition (C3) is a Lindeberg-type condition (con-
trolling the tails) that allows us to invoke the CLT in Theorem 4
of Li and Ding (2017) that underlies our finite population CLT.
(C4) ensures that the treatment and control group samples in
each block both grow sufficiently fast, and also ensures limiting
values of asymptotic variances and covariances of the residu-
alized potential outcomes. (C5) provides a weak law of large
numbers for the weights so that w̄t

b/w̄b
p→ 1, where w̄t

b =
1

mt
b

∑mb
j:Tj=t wjb. (C7) specifies limiting values of the covariate

variances and outcome-covariate covariances, which in turn,
provide regularity conditions on γ̂ .

These conditions imply that within a block, we cannot have
one cluster (or a few clusters) asymptotically dominating all
other clusters in terms of their weights, so that the weighted
covariance matrices for the outcomes and covariates are well
defined. In general, this is unlikely to be restrictive: due to
normalizing by the mean block weight, even if weighted cluster
sizes steadily grow, our results hold as long as the relative block
sizes do not get too disparate.

Remark 2. The above theorem is proved as a two-step process.
We first assume γ =

(∑h
b=1 qbS2

x,b

)−1 [∑h
b=1 pbqbS2

x,Y ,b(1) +∑h
b=1

(
1 − pb

)
qbS2

x,Y ,b(0)] is known, where qb = mb/m and
pb = m1

b/mb, and obtain a CLT with this known parameter.
This parameter is the (unobserved) WLS coefficient vector that
would be obtained using the full set of potential outcomes. We
then show that γ̂ converges to the same asymptotic value as γ

and use (C6) to ensure that ( ¯̄x1
b − ¯̄x0

b) is asymptotically normal
with zero mean, so that the ATE estimator still converges to a
standard normal. Note that we focus on the asymptotic regime
where the number of clusters increases. Liu and Yang (2020)
instead allow the number of blocks to increase, focusing on
settings with a small number of clusters per block and a large
number of blocks.

Remark 3. The first two terms in (8) pertain to separate vari-
ances for the treatment and control groups because we allow for
heterogeneous treatment effects. These variances are based on
model residuals averaged to the cluster level and are similar in
form to the variance formulas in Li and Ding (2017) for non-
blocked designs. The third term pertains to the covariance of
cluster-level average potential outcomes in the treatment and
control conditions, S2

Db
(1, 0), that we express in terms of the

heterogeneity of treatment effects across clusters, S2(Db). We
hereafter label this term the “finite population heterogeneity”
term. It cannot be identified from the data but can be bounded
(as discussed in Section 4.2).

Remark 4. Under (C1)–(C5), Theorem 1 also applies to mod-
els without covariates by setting γ = 0, yielding a simple
differences-in-means ATE ratio estimator, β̂1,b = ¯̄yb(1)− ¯̄yb(0).
We discuss the finite sample bias of this estimator in Section
A.2.2 in the supplementary materials.

Corollary 1. Under the conditions of Theorem 1 with model
covariates, the asymptotic variance in (8) is minimized when
γ = γ B, where γ B is the between-cluster regression parameter
using data aggregated to the cluster level. The parameter, γ B,
is defined analogously to γ in Remark 2 by replacing S2

x,b with
S2

x,b,B = 1
mb

∑mb
j=1 wjb

(
x̄jb − ¯̄xb

)′ (x̄jb − ¯̄xb
)

, and using parallel
cluster-level versions of S2

x,Y ,b(1) and S2
x,Y ,b(0).

This result follows because S2
Db

(1) and S2
Db

(0) in (8) are based
on cluster-level residuals. Section A.5 of the supplementary
materials derives the asymptotic efficiency loss using the indi-
vidual data when the covariates vary both within and between
clusters. Intuitively, the γ parameter is a weighted average of
between- and within-cluster population regression parameters.
But the within-cluster covariates, (xijb − x̄jb), have no effect
on S2

Db
(t), and hence, on precision, so they bias γ . However,

as discussed in Section 4.2, these efficiency losses using the
individual data can be offset by other precision factors in finite
samples.

Corollary 2. Under the conditions of Theorem 1 and assuming
w̄b = wb

mb
has a finite limit for all b, the pooled ATE esti-

mator across blocks, β̂1 = 1
hw̄

∑h
b=1 wbβ̂1,b, is consistent for

β1 in (2) and 1√
var(D̂)

(β̂1 − β1)
d→ N(0, 1), where var(D̂) =

1
(hw̄)2

∑h
b=1 w2

bvar(D̂b) and w̄ = 1
h

∑h
b=1 wb.

This result follows because the β̂1,b estimators are asymptot-
ically independent.

4.2. Variance Estimation

We can estimate the block-specific variance in (8) with a con-
sistent (upper bound) plug-in variance estimator based on the
regression residuals averaged to the cluster level as follows:

vâr
(

D̂b
)

= s2
Db

(1)

m1
b

+ s2
Db

(0)

m0
b

, (9)

where

s2
Db

(1) = 1(
m1

b − v∗p∗
bq∗

b − 1
)

m1
b∑

j:Tjb=1

w2
jb

(w̄1
b)

2 (ȳjb − β̂0,b − (1 − p∗
b)β̂1,b − ˜̄xjbγ̂ )2,

s2
Db

(0) = 1(
m0

b − v∗(1 − p∗
b)q∗

b − 1
)

m0
b∑

j:Tjb=0

w2
jb

(w̄0
b)

2 (ȳjb − β̂0,b + p∗
bβ̂1,b − ˜̄xjbγ̂ )2,
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q∗
b = wb∑h

b=1 wb
is the weighted share of all clusters in block b,

and v∗ is a degrees of freedom adjustment for the covariates. As
discussed in Donald and Lang (2007), plausible values for v∗ are
v∗ = v (the number of covariates), which applies when using
cluster-level covariates, or v∗ = 0, which applies when using
individual-level covariates that vary only within clusters and not
between clusters. Other approaches have been proposed, such
as adjusting v for design effects due to clustering (Hedges 2007)
and minimum distance methods (Wooldridge 2006).

In our simulations in Section 6, we also use two variants
of (9). First, we multiply (9) by (1 − R2

TXb)
−1, where R2

TXb is
the R-squared value from a regression of Sijb,sT̃jb on x̃ijb and
the other block-by-treatment status interactions in (5) (with
no intercept). This term captures the finite sample collinearity
between T̃jb and x̃ijb (which inflates the variances). This estima-
tor performs well in our simulations. The second variant sub-

tracts 1
mb

(√
s2
Db

(1) −
√

s2
Db

(0)
)2

, a lower bound on the finite
population heterogeneity term based on the Cauchy–Schwarz
inequality. Aronow et al. (2014) discuss sharper bounds on this
heterogeneity term by approximating the marginal distributions
of potential outcomes.

The regression model can also be estimated using data aver-
aged to the cluster level, so that setting v∗ = v yields well-
defined degrees of freedom. For models that use cluster-level
covariates only (or no covariates), estimators using the individ-
ual and aggregate data will coincide. However, for models with
individual-level covariates that vary both within and between
clusters, the estimators can differ. In this case, as discussed
in Section 4.1, data aggregation yields asymptotically efficient
estimators. However, as proved and quantified in Section A.6
(the supplementary materials), in finite samples, precision losses
from using individual data could be offset by precision gains due
to the reduced collinearity between the covariates and treatment
indicators (TX collinearity). In our simulations, we examine
precision levels using the individual and aggregate data to assess
these counteracting factors.

Finally, we can obtain pooled ATE estimators
across all blocks by inserting β̂1,b into (2) and using

1
(hw̄)2

∑h
b=1 w2

bvâr(D̂b) for variance estimation. Hypothesis
testing can be conducted using z-tests. Alternatively, results
in Bell and McCaffrey (2002), Hansen (2007), and Cameron
and Miller (2015) for the CRSE estimator suggest that t-tests
with (m − 2h − v∗) degrees of freedom perform better in small
samples and is what we use hereafter.

4.3. Comparing Design-Based and CRSE Estimators

The CRSE variance estimator is an extension of robust standard
errors (Huber 1967; White 1980) to clustered designs (Liang and
Zeger 1986). The CRSE approach, which assumes iid sampling
of clusters from some (infinite) super-population, allows for
errors to be correlated within clusters but not across clusters. As
with the design-based estimators, the CRSE estimator is based
on weighted least squares using the pooled data across blocks
and is asymptotically normal. Therefore, both approaches yield
the same ATE estimator when the covariates and weights are the
same, but the variance estimators differ in several ways.

To illustrate the key variance differences, consider first the
model without covariates. In this case, as shown in Section A.7
in the supplementary materials, the CRSE variance estimator for
a single block-by-treatment ATE estimate, β̂1,b, is

vârCRSE
(
β̂1,b

)
= g

s2∗
Db

(1)

m1
b

+ g
s2∗
Db

(0)

m0
b

, (10)

where s2∗
Db

(1) = (m1
b−1)

m1
b

s2
Db

(1), s2∗
Db

(0) = (m0
b−1)

m0
b

s2
Db

(0),
and g is a small sample correction term. Here, we use g =(

m
m−1

) (
n−1

n−2h−v

)
, a common value in statistical software pack-

ages such as Stata (Cameron and Miller 2015), although other
approaches have been proposed, such as bias-corrected CRSE
estimators (Mackinnon and White 1985; Angrist and Lavy 2002;
Bell and McCaffrey 2002; Pustejovsky and Tipton 2018) and
bootstrap methods (Cameron et al. 2008; Webb 2013) to adjust
for the known Type 1 error inflation of the CRSE estimator in
small samples.

Compare (10) to the following parallel expression for the
design-based estimator in (9):

vâr
(

D̂b
)

= m1
b

(m1
b − 1)

s2∗
Db

(1)

m1
b

+ m0
b

(m0
b − 1)

s2∗
Db

(0)

m0
b

. (11)

Examining (10) and (11) establishes that the design-based
and CRSE variance estimators are asymptotically equivalent,
because both correction terms converge to 1 as m1

b → ∞
and m0

b → ∞. In finite samples, however, there are two key
differences between the estimators that pertain to the degrees
of freedom adjustments. First, the adjustments for the design-
based variance estimator are applied separately for treatments
and controls based on m1

b and m0
b, whereas the standard CRSE

estimator applies a single adjustment, g, based on total sample
sizes (m and n). Second, the design-based estimator uses (m−2)

degrees of freedom for the t-tests, reflecting separation of the
two research groups, whereas the CRSE estimator commonly
uses (m − 1) (Cameron and Miller 2015). These two differences
will typically lead to larger design-based variances and lower
rejection rates. Note also that the finite population heterogeneity
term does not apply to the CRSE estimator as it assumes a super-
population sampling framework. Similar results apply to the
model with covariates (see Section A.7 in the supplementary
materials).

5. Restricted ATE Estimators with Fixed Block Effects
Only

A commonly used estimation strategy for blocked designs is to
include block indicator variables in the regression model but to
exclude block-by-treatment status interaction terms:

yijb = β1,RT̃jb +
h∑

s=1
δ0,sSijb,s + εijb, (12)

where εijb is the error term. Because this framework imposes
restrictions on the assumed data structure, it typically produces
asymptotically biased estimates of the true ATE parameter in
(2). Nevertheless, it has practical appeal due to its parsimony
and additional degrees of freedom.
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Consider WLS estimation of (12) where the model includes
the x̃ijb covariates with parameter vector γ . As shown in Sec-
tion A.4 (supplementary materials), the WLS estimator for β1,R
is a weighted average of block-level ATE estimates with weights,
w̃b,R = 1

mwb
w0

bw1
b:

β̂1,R =
h∑

b=1

w̃b,R∑h
a=1 w̃a,R

( ¯̄yb(1) − ¯̄yb(0) − ( ¯̄x1
b − ¯̄x0

b
)
γ̂

)
. (13)

The weights can also be expressed in the limit as w̃b,R =
qbpb

(
1 − pb

)
w̄b, where qb = mb/m. Thus, this approach

uses a form of precision weighting to weight the block-specific
treatment effects and is analogous to a fixed effects regression
model using nonclustered data. The weights for the restricted
model will differ from those for the unrestricted model (causing
asymptotic bias), except if the ATEs or pb

(
1 − pb

)
values are

homogenous across blocks.

5.1. Theoretical Results

We now present a CLT for β̂1,R that is proved in Section A.4 in
the supplementary materials. Let

β1,R =
h∑

b=1

qbpb(1 − pb)w̄b∑h
b=1 qbpb(1 − pb)w̄b

( ¯̄Yb(1) − ¯̄Yb(0)
)

denote the treatment effect parameter for the restricted model.
Also define the vector of block-level estimators as a series of
triples:

t = (w̄1
1
( ¯̄y1(1) − ¯̄x1

1γ
)

, w̄0
1
( ¯̄y1(0) − ¯̄x0

1γ
)

, w̄1
1, . . . ,

w̄1
h
( ¯̄yh(1) − ¯̄x1

hγ
)

, w̄0
h
( ¯̄yh(0) − ¯̄x0

hγ
)

, w̄1
h).

Theorem 2. Assume (C1), (C2), (C4) for f t
b , (C5), (C6), (C7) and

the following conditions for t ∈ {1, 0}:

(C8) As m → ∞,

max
1≤b≤h

aY ,b(t)
pb(1 − pb)mbvY ,b(t)

→ 0, where

aY ,b(t) = max
1≤j≤mb

(
wjb

(
Ȳjb(t) − x̄jbγ

) − w̄b
( ¯̄Yb(t) − ¯̄xbγ

))2
,

vY ,b(t) = 1
mb − 1

mb∑
j=1

(
wjb

(
Ȳjb(t)−x̄jbγ

)−w̄b
( ¯̄Yb(t)−¯̄xbγ

))2
.

(C9) As m → ∞,

max
1≤b≤h

aw,b
pb(1 − pb)mbvw,b

→ 0,

where aw,b = max1≤j≤mb

(
wjb − w̄b

)2 and vw,b =
1

mb−1
∑mb

j=1
(
wjb − w̄b

)2.

(C10) The correlation matrix of t has a finite limiting value �.

(C11) The variance expressions, vw,b and vY ,b(t), have finite
limiting values for b ∈ {1, . . . , h}.

(C12) w̄b
( ¯̄Yb(1) − ¯̄xbγ

)
	= 0 or w̄b

( ¯̄Yb(0) − ¯̄xbγ
)

	= 0 for
some b.

Then, as m → ∞, β̂1,R is a consistent estimator for β1,R and

β̂1,R − β1,R√
var

(
β̃1,R

) d→ N(0, 1), where

var
(
β̃1,R

)
(14)

=
h∑

b=1

1
mb(mb − 1)

(qbpb(1 − pb)w̄b)
2

(
∑h

a=1 qapa(1 − pa)w̄a)2

mb∑
j=1

(√
1 − pb

pb

⎛
⎝wjb

(
Ȳjb(1) − ¯̄Yb(1) − (

x̄jb − ¯̄xb
)
γ

)
w̄b

⎞
⎠

+
√

pb
1 − pb

⎛
⎝wjb

(
Ȳjb(0) − ¯̄Yb(0) − (

x̄jb − ¯̄xb
)
γ
)

w̄b

⎞
⎠

+ (1 − 2pb)√
pb(1 − pb)w̄b

(β1,b − β1,R)(wjb − w̄b)

)2
.

Remark. The first two terms inside the brackets in (14) per-
tain to block-specific variances for the treatment and control
groups that are analogous to the corresponding variance terms
in the unrestricted model in (8). The third term represents
the covariance between the block treatment effects and block
weights that is induced by the restricted model. This term differ-
entiates the variances for the restricted and unrestricted models,
along with the block weights used for pooling. This third term
is 0 if pb = 0.5 or cov

(
β1,b, wjb

) = 0 for all b, but otherwise can
be positive or negative.

5.2. Variance Estimation

A consistent variance estimator for (14) can be obtained by
multiplying out the squared term and using plug-in estimators
for each of the resulting six terms. However, it is simpler to use
the following consistent estimator based on cluster-level model
residuals:

vâr
(
β̂1,R

)
= m

(m − h − v∗ − 1)∑h
b=1

∑mb
j=1 w2

jbT̃2
jb(ȳjb − β̂1,RT̃jb − δ̂0,b − ˜̄xjbγ̂ )2

(
∑h

b=1 mbp∗
b(1 − p∗

b)w̄b)2
,

(15)

recalling that T̃jb = (Tjb − p∗
b). Following Schochet (2016), the

expression in (15) can be justified using the following standard
asymptotic expansion for the WLS estimator:
√

m
(
β̂1,R − β1,R

)

=
∑h

b=1
∑mb

j=1 wjbT̃jb(ȳjb − β1,RT̃jb − δ0,b − ˜̄xjbγ)
√

m
∑h

b=1 qbpb(1 − pb)w̄b
+op(1),

(16)

where op(1) signifies a term that converges in probability to zero.
Suppose we insert into (16), ȳjb = TjbȲjb(1) + (1 − Tjb)Ȳjb(0)
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and δ0,b = pb
¯̄Yb(1) + (1 − pb)

¯̄Yb(0) (see Section A.4 in the
supplement), and then add and subtract

(
β1,b − β1,R

)
T̃jb. If we

then calculate var
(
β̂1,R

)
over the randomization distribution,

we obtain (15) after some algebra. Hypothesis testing can be
conducted using t-tests with (

∑h
b=1

(
m1

b + m0
b
) − v∗ − h − 1)

degrees of freedom. Note that with v∗ = 0, estimation only
requires at least 1 treatment and 1 control cluster per block
rather than two as for the fully-interacted model. A (1−R2

TX)−1

correction can also be applied to (15).

6. Simulation Results

To examine the statistical properties of the design-based esti-
mator, we conducted simulations for a clustered, non-blocked
design (h = 1). We applied the variance estimator in (9)
with and without (1) model covariates, (2) the R2

TX adjust-
ment, and (3) the finite population heterogeneity term based on
the Cauchy-Schwarz inequality. We also included the standard
CRSE estimator to identify sources of differences between the
two approaches (our goal is not to compare various proposed
CRSE estimators to each other). Note that if h > 1, differences in
block-level estimates between the two approaches will be greater
than the simulation results presented here (holding m fixed),
because the degrees of freedom adjustments will differ more (see
(10) and (11)).

To generate potential outcomes for our primary simulations,
we used the following model (see Section B in the supplemen-
tary materials for simulation details):

Yij(0) = xij1 + xij2 + uj + eij

Yij(1) = Yij(0) + θj, (17)

where uj, θj (which captures treatment effect heterogeneity), and
eij are each iid mean zero random errors and xij1 and xij2 are
independent covariates. For each draw of potential outcomes,
we conducted 1000 replications where we randomly assigned
clusters to either the treatment or control group. We ran separate
simulations for m = 8 to 50 clusters.

We examined a range of simulation scenarios for the covari-
ates and model distributions. We generated data with (1) no
covariates (excluding xij1 and xij2 from (17)); (2) two individual-
level covariates (applying an intraclass correlation coefficient
of ρX = 0); (3) two cluster-level covariates (applying ρX =
1); and (4) one individual-level and one cluster-level covariate.
For the models with individual-level covariates, we calculated
the degrees of freedom in three ways, setting v∗ equal to 0,
the total number of covariates (v), or the number of cluster-
level covariates (if applicable). We generated data assuming
normal, bimodal, and chi-squared distributions for the errors
and covariates in (17).

Finally, to compare the true variances of models estimated
using individual and aggregate data (see Sections 4.1 and 4.2),
rather than directly generating data for xijk, we instead gener-
ated data separately for the between- and within-cluster com-
ponents, x̄jk and

(
xijk − x̄jk

)
. We then included these compo-

nents as covariates in (17) to generate the outcomes, allowing
for different parameter values, γ Bk and γ Wk. The individual-
level models, however, were estimated using xijk only (not the

components) with parameter γ k (see the supplementary mate-
rials for details).

6.1. Results Without Covariates

For models without covariates, the simulation results indicate
that the design-based estimator without the correction for the
finite population heterogeneity term yields Type I errors near
the 5% nominal level and standard errors near true values,
even with relatively few clusters (see Figure 1 and Table B.1,
supplementary materials for the full results). In contrast, the
standard CRSE estimator in (10) yields inflated Type I errors
similar to those found in the literature using a super-population
simulation framework (see, e.g., Cameron et al. 2008; Green and
Vavrek 2008; Angrist and Pischke 2009) (Figure 1; Table B.1,
supplementary materials). These differences arise because the
CRSE estimator applies a single degrees of freedom variance
adjustment based on the total sample size, whereas the design-
based estimator applies a separate adjustment for the treat-
ment and control groups, which inflates the variances. A more
minor reason is that the CRSE approach uses (m − 1) degrees
of freedom for the t-tests rather than (m − 2). The design-
based variance estimator that includes a correction for the finite
population heterogeneity term also overrejects (so we do not
focus on this estimator in what follows), but less so than the
CRSE estimator (Figure 1; Table B.4, supplementary materials).
We find similar simulation results using different model dis-
tributions (Table B.1, supplementary materials) and individual
sample sizes (Table B.4, supplementary materials).

Biases of the ATE estimators are negligible (Table B.1, sup-
plementary materials). Further, mean squared errors of the
estimated standard errors are nearly identical for the two
approaches, suggesting similar stability in estimating uncer-
tainty (Table B.1, supplementary materials). This result occurs
because the larger variance of the estimated standard errors
for the design-based estimator is offset by the smaller bias in
its estimated standard errors (relative to the “true” values as
measured by the standard deviation of the 1000 ATE estimates
across replications). Finally, for small m, power levels are lower

Figure 1. Type I error rates for models without covariates.
Abbreviations. DB = Design-based variance estimator; FP term = Finite population
heterogeneity term included based on the Cauchy-Schwarz inequality; CRSE =
Standard cluster-robust standard error estimator.
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for the design-based than CRSE estimator (due to lower Type I
errors), but the design-based estimator more closely matches
power levels calculated using the true standard errors (Table B.2,
supplementary materials).

6.2. Results with Covariates

A similar pattern of results arises when covariates are included
in the model (and standard errors decrease) (Figure 2;
Tables B.3 and B.4, supplementary materials). For the model
with individual-level covariates only (ρX = 0), we find that
the design-based estimator with v∗ = 0 yields Type I errors
near the nominal level (Model (1) in Figure 2). In this case, the
R2

TX adjustment has little effect on the results (Table B.3, sup-
plementary materials). If we instead apply v∗ = 2, the design-
based approach becomes conservative (Model (2) in Figure 2).
As before, the standard CRSE estimator yields inflated Type 1
errors (Model (3) in Figure 2).

For the model with cluster-level covariates only (ρX =
1; v∗ = 2), which is identical to aggregating the data to the
cluster level, the design-based estimator yields Type 1 errors at
the nominal level if the R2

TX adjustment is applied, even with
m = 8, but overrejects without this adjustment (Models (4) and
(5) in Figure 2). For this specification, the CRSE estimator pro-
duces Type 1 errors that are more inflated than with individual
covariates (Model (6) in Figure 2).

For models containing one individual-level covariate (v1 =
1) and one cluster-level covariate (v2 = 1), we find that for the
design-based estimator, setting v∗ = 0 is liberal; setting v∗ =
v2 = 1 yields Type I errors close to the nominal rate; and setting
v∗ = v1 + v2 = 2 is conservative (Table B.4, supplementary
materials). As before, the CRSE tends to overreject with few
clusters.

Finally, the simulation results comparing the true variances
based on the individual and aggregate data—where we gener-
ated data using x̄jk and

(
xijk − x̄jk

)
but estimated the models

using xijk only—support the theory presented in Sections 4.1

Figure 2. Type I error rates for models with covariates.
Abbreviations. DB = Design-based variance estimator in (9) (without the finite pop-
ulation heterogeneity term); “cluster covs” = Two cluster-level covariates included
in the model; “Individual covs” = Two individual-level covariates included in the
model; “R-sq-adj” = R2

TX adjustment applied to the DB estimator; v∗ = Degrees
of freedom adjustment for the covariates for the DB estimator; CRSE = Standard
cluster-robust standard error estimator.

and 4.2 (Table B.5, supplementary materials). When γ Bk =
γ Wk, the true variances are always smaller using the individual
data because γ k is asymptotically efficient in this case and the
TX collinearities are always smaller. The differences decrease,
however, as m increases and the TX collinearities become neg-
ligible. In contrast, when γ Bk/γ Wk = 2, with a single covariate,
the aggregate data produce more precise estimates, even when
m = 8. However, with five covariates, the TX collinearities
become more problematic, so even when γ Bk/γ Wk = 2, the
individual data yield efficiency gains unless m ≥ 50. With more
covariates, the TX collinearities using the aggregate data are
severe, favoring the use of the individual data.

6.3. Super-Population Simulation Results

To compare our results to those in the literature for the CRSE
estimator, we also conducted select simulations using a super-
population framework by generating 50,000 separate datasets.
These results show a similar pattern to the results above, but with
somewhat larger true standard errors (Table B.6, supplementary
materials).

6.4. Discussion

Overall, the simulation results suggest that the design-based
estimator has beneficial statistical properties with few clusters
for models with or without covariates. For models with covari-
ates and relatively large n (typical for clustered RCTs in practice),
the results suggest that setting v∗ = v2 (the number of cluster-
level covariates) could be a good general strategy, and that
setting v∗ = v (the total number of covariates) is conservative.
The simulations further indicate that even with individual-level
covariates, the design-based estimator using data averaged to
the cluster-level with the R2

TX adjustment and v∗ = v yields
nominal rejection rates. While aggregation can result in losses
in statistical power (due to increased TX collinearities), it could
be a good strategy with small numbers of covariates if m is
moderate.

7. Empirical Application Using the Motivating SACD
Example

To demonstrate the considered estimators, we use outcome and
baseline data from the SACD evaluation on 4018 4th graders
(2147 treatments and 1871 controls) in 84 schools in 7 large
school districts. The data were obtained from student reports
administered in the classroom, primary caregiver telephone
interviews, and teacher reports on students (SACD Consortium
2010). We analyze six primary study outcome scales (Table 1)
and adjust for baseline covariates selected in an initial step
from the 46 available, along with their two-way interactions,
using least absolute shrinkage and selection operator (LASSO)
methods with 5-fold cross-validation (Tibshirani 1996). We use
the LASSO-WLS hybrid procedure for clustered RCTs devel-
oped in Schochet (2020b) based on the design-based estimators
presented above (see also Bloniarz et al. 2016). In the first stage,
LASSO estimation is conducted using cluster-level averages, and
in the second stage, design-based WLS estimation is conducted
using the individual data and first stage LASSO covariates. Our
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Table 1. Outcome variables for the empirical analysis using SACD RCT data.

Outcome Data source (Spring 2007) Description of variable

Problem behavior Child report Scale ranges from 0 to 3 and contains 6 items from the Frequency of Delinquent
Behavior Scale and 6 items from the Aggression Scale; Reliability = 0.86.

Normative beliefs about aggression Child report Scale ranges from 1 to 4 and contains 12 items from the
Normative Beliefs About Aggression Scale; Reliability = 0.83.

Student afraid at school Child report Scale ranges from 1 to 4 and contains 4 items from the Feelings of Safety at School
scale; Reliability = 0.79.

Altruistic behavior Primary caregiver report Scale ranges from 1 to 4 and contains 8 items from the Altruism Scale, Primary
Caregiver Version; Reliability = 0.88

Positive social behavior Teacher report Scale ranges from 1 to 4 and contains 6 items from the Responsibility Scale and 19
items from the Social Competence Scale and 8 items from the Altruism Scale, Teacher
Version; Reliability = 0.97.

Problem behavior Teacher report Scale ranges from 1 to 4 and contains 14 items from the BASC Aggression Subscale,
Teacher Version, 7 items from the BASC Conduct Problems Subscale, Teacher Version
and 2 items from the Responsibility Scale; Reliability = 0.95.

Note: See SACD Research Consortium (2010) for a complete description of the construction of these scales.

Table 2. Estimated ATEs and standard errors for the SACD study, by model specification.

Model with site-by-treatment interaction terms

Individuals weighted Schools and sites Model with site fixed
equally weighted equally effects only

Outcome variable and Design- Standard Design- Standard Design- Standard
covariate specification based CRSE based CRSE based CRSE

Model without covariates

Problem behavior (CR) 0.006 0.006 0.011 0.011 0.006 0.006
(0.037) (0.034) (0.041) (0.038) (0.036) (0.035)

Normative beliefs about 0.003 0.003 0.000 0.000 0.003 0.003
aggression (CR) (0.031) (0.029) (0.038) (0.035) (0.031) (0.030)

Student afraid at school (CR) −0.064 −0.064 −0.041 −0.041 −0.064 −0.064
(0.052) (0.048) (0.061) (0.056) (0.050) (0.048)

Altruistic behavior (PCR) −0.006 −0.006 −0.011 −0.011 −0.006 −0.006
(0.035) (0.032) (0.041) (0.037) (0.034) (0.033)

Positive social behavior (TR) −0.046 −0.046 −0.036 −0.036 −0.045 −0.045
(0.061) (0.056) (0.065) (0.060) (0.060) (0.056)

Problem behavior (TR) 0.019 0.019 0.006 0.006 0.019 0.019
(0.040) (0.036) (0.044) (0.040) (0.039) (0.038)

Model with covariates

Problem behavior (CR) −0.006 −0.006 −0.002 −0.002 −0.006 −0.006
(0.027) (0.025) (0.031) (0.028) (0.027) (0.025)

Normative beliefs about −0.005 −0.005 −0.009 −0.009 −0.005 −0.005
aggression (CR) (0.026) (0.024) (0.033) (0.030) (0.026) (0.025)

Student afraid at school (CR) −0.067∗ −0.067∗ −0.047 −0.047 −0.067∗ −0.067∗
(0.040) (0.035) (0.045) (0.040) (0.037) (0.036)

Altruistic behavior (PCR) −0.016 −0.016 −0.013 −0.013 −0.017 −0.017
(0.028) (0.024) (0.031) (0.027) (0.027) (0.026)

Positive social behavior (TR) −0.011 −0.011 −0.015 −0.015 −0.010 −0.010
(0.045) (0.039) (0.045) (0.040) (0.043) (0.040)

Problem behavior (TR) −0.009 −0.009 −0.011 −0.011 −0.009 −0.009
(0.025) (0.023) (0.026) (0.023) (0.025) (0.023)

CR = child report; PCR = primary caregiver report; TR = teacher report; CRSE = Cluster-robust standard error estimator.
*Statistically significant at the 10% level, two-tailed test.

goal is not to replicate study results but to illustrate the ATE
estimators.

Table 2 presents the estimation results for various model
specifications: (1) with and without baseline covariates, (2) with
and without block-by-treatment status interaction terms, and
(3) with equal weighting of individuals (to estimate ATEs for
the average student in the sample) versus equal weighting of
sites and clusters (to estimate ATEs for the average school in the
average district). Our methods can easily accommodate weights
to adjust for data item nonresponse. We present results for both
the design-based and standard CRSE estimators.

The results indicate that for all specifications, the behavioral
health interventions had no statistically significant effect on
any outcome scale, although the negative estimate on the scale
measuring fear in school is marginally statistically significant at
the 10% level for most models with covariates (Table 2). Across
the six outcomes, standard errors are about 16 to 35 percent
smaller when covariates are included in the models. Further, we
find very similar results for the fully-interacted and restricted
models for two reasons: (1) the estimated treatment effects vary
little across sites (an average standard deviation of 0.07 across
the outcomes) and (2) the two sets of site weights are highly
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correlated (greater than 0.95) because pb is about 0.5 in all sites.
Further, because sample sizes do not vary substantially across
sites (they range from 425 to 650 students in 10 to 14 schools),
findings do not materially differ when individuals versus blocks
and clusters are weighted equally, although in the latter case,
standard errors increase due to design effects from weighting,
and the marginally significant impact on the scale measuring
fear at school disappears. Finally, consistent with the theory
and simulations, standard errors are somewhat larger using the
design-based estimators than the parallel CRSE estimators.

8. Conclusions

This article considered design-based ratio estimators for clus-
tered, blocked RCTs using the Neyman-Rubin-Holland model
and weighted least-square methods. We developed finite pop-
ulation CLTs for the ATE estimators, allowing for baseline
covariates to improve precision, general weighting schemes, and
several common approaches for handling blocks in the models.
We showed that the design-based ratio estimators are attractive
in that they yield consistent and asymptotically normal ATE
estimators with simple variance estimators based on cluster-
level model residuals; apply to continuous, binary, and discrete
outcomes; and yield Type I errors at nominal levels for mod-
els with and without covariates, even in small samples. Our
theory applies to analyses conducted using either individual or
aggregate (cluster-level) data, where our results suggest that in
practice, the use of individual data will tend to yield more precise
estimates for models with covariates (that vary both within and
between clusters), unless the number of covariates is very small.

An unexpected finding is that the “conservative” variance
estimator that excludes a correction for the finite population
heterogeneity term based on the Cauchy-Schwarz inequal-
ity improves statistical performance. Further, for models with
covariates, an R2

TX adjustment for the collinearity between the
covariates and treatment indicator improves results in designs
with few clusters and subjects.

Our findings justify the CRSE estimator from a finite popu-
lation perspective (even though it estimates a super-population
ATE parameter); this contribution follows similar literature for
the individual randomized case (see, e.g., Freedman 2008; Lin
2013). However, while the structure of the design-based and
standard CRSE variance estimators are similar, differences in
their degrees of freedom adjustments do affect their statistical
performance in small samples (the standard CRSE estimator
overrejects in this case). The key difference is simple: the ran-
domization mechanism leads to separate degrees of freedom
adjustments for the treatment and control groups based on
their respective numbers of clusters (in each block), whereas the
CRSE approach often used in practice applies a single adjust-
ment based on the total number of clusters. These differences
tend to increase with more blocks.

As discussed in the article, other corrections for the CRSE
estimator have been proposed that can improve the Type 1 error
inflation rate in general settings. In the RCT setting, however,
the advantage of the design-based variance estimator is that it is
tailored to experiments, as it is derived directly from principles
underlying them. Further, it is simple to apply and parallels

design-based estimators for non-clustered RCTs. The free RCT-
YES software (www.rct-yes.com), funded by the U.S. Depart-
ment of Education, estimates ATEs for full sample and baseline
subgroup analyses using the design-based methods discussed in
this article using either R or Stata, and also allows for multi-
armed trials with multiple treatment conditions.
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